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Abstract

According to an “external grounding” theory of meaning, a concept’s meaning depends on its

connection to the external world. By a “conceptual web” account, a concept’s meaning depends on

its relations to other concepts within the same system. We explore one aspect of meaning, the

identification of matching concepts across systems (e.g. people, theories, or cultures). We present

a computational algorithm called ABSURDIST (Aligning Between Systems Using Relations

Derived Inside Systems for Translation) that uses only within-system similarity relations to find

between-system translations. While illustrating the sufficiency of a conceptual web account for

translating between systems, simulations of ABSURDIST also indicate powerful synergistic inter-

actions between intrinsic, within-system information and extrinsic information. q 2002 Elsevier

Science B.V. All rights reserved.

Keywords: Concepts; Meaning; Symbol grounding; Conceptual-role semantics; Translation; Neural networks

1. Introduction

“Mr. Martin: I have a little girl, my little daughter, she lives with me, dear lady. She is

two years old, has a white eye and a red eye, she is very pretty, and her name is Alice,

dear lady.

Mrs. Martin: What a bizarre coincidence! I, too, have a little girl. She is two years old,

has a white eye and a red eye, she is very pretty, and her name is Alice, too, dear sir!

Mr. Martin: How curious it is and what a coincidence! And bizarre! Perhaps they are the

same, dear lady!”

Eugene Ionesco (1958), “The Bald Soprano”

What gives our concepts their meaning? There have been two major answers to this
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question. The first answer is that concepts’ meanings depend on their connection to the

external world. By this account, the concept Dog means what it does because of its causal

connection to dogs in the world. Perceptual processes are critical to this account in that

they mediate between the external and internal worlds. Dog is characterized by features

that are either perceptually given, or can be reduced to features that are perceptually given.

This will be called the “external grounding” account of conceptual meaning. The second

answer is that concepts’ meanings depend on their connections to each other. By this

account, Dog’s meaning depends on Cat, Domesticated, and Loyal, and in turn, these

concepts depend on other concepts, including Dog. The dominating metaphor here is of a

conceptual web in which concepts all mutually influence each other (Quine & Ullian,

1970). A concept can mean something within a network of other concepts but not by itself,

similar to how stability may be a property of a thread within a web but not any thread taken

in isolation. This will be called the “conceptual web” account.

Some researchers find the notion of a network of concepts wherein each concept char-

acterizes, and is characterized by, the others as viciously circular. Others embrace the

prospect, acknowledging its circularity, but diagnosing it as benign rather than vicious.

The agenda of the present paper is three-fold. First, we will provide a brief and partial

survey of the motivations for these contrasting perspectives on conceptual meaning.

Second, we will focus on one argument against the conceptual web account. According

to this argument, the conceptual web account cannot explain how two people can be said to

possess the same concept if they have even slightly different conceptual systems. Third,

we will present a computational algorithm that is able to find corresponding concepts

across people or systems solely on the basis of relations between concepts within a person

or system. A quantitative assessment of the algorithm will evaluate the robustness of the

algorithm and its sensitivity to various parameters governing a conceptual network.

Although the mere presence of the algorithm might be taken as evidence in favor of the

conceptual web account, a closer examination of the algorithm’s performance reveals

important interactions between internal and external characterizations of a concept.

Given these interactions, our final conclusion will be that the conceptual web and external

grounding accounts of meaning are not only compatible with each other, but that they

strengthen one another.

2. The conceptual web

The notion that the meaning of a concept depends on the other concepts within a system

has been highly influential in all of the major fields that comprise cognitive science:

linguistics, computer science, psychology, and philosophy. Representative theories in

each of these fields will be described, although many other candidates could have easily

been chosen.

In a standard linguistic treatment of concepts, concepts are defined or characterized in

terms of other concepts. Ferdinand de Saussure (1915/1959) argued that all concepts are

completely “negatively defined”, that is, defined solely in terms of other concepts. He

contended that “language is a system of interdependent terms in which the value of each

term results solely from the simultaneous presence of the others” (p. 114) and that
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“concepts are purely differential and defined not in terms of their positive content but

negatively by their relations with other terms in the system” (p. 117). By this account, the

meaning of Mutton is defined in terms of other neighboring concepts. Mutton’s use does

not extend to cover sheep that are living because there is another lexicalized concept to

cover living sheep (Sheep), and Mutton does not extend to cover cooked pig because of

the presence of Pork. Under this notion of interrelated concepts, concepts compete for the

right to control particular regions of a conceptual space. If the word mutton did not exist,

then “all its content would go to its competitors” (Saussure, 1915/1959, p. 116).

According to the conceptual role semantics theory in philosophy, the meaning of a

concept is given by its role within its containing system (Block, 1986, 1999; Field,

1977; Rapaport, 2002). A conceptual belief, for example, that dogs bark, is identified

by its unique causal role in the mental economy of the organism in which it is contained.

A system containing only a single concept is not possible (Stich, 1983). A common

inference from this view is that concepts that belong to substantially different systems

must have different meanings. This inference, called “translation holism” by Fodor and

Lepore (1992), entails that a person cannot have the same concept as another person unless

the rest of their conceptual systems are at least highly similar. This view has had perhaps

the most impact in the philosophy of science, where Kuhn’s incommensurability thesis

states that there can be no translation between scientific concepts across scientists that are

committed to fundamentally different ontologies (Kuhn, 1962). A chemist indoctrinated

into Lavoisier’s theory of oxygen cannot translate any of their concepts to earlier chemists’

concept of phlogiston. A more recent chemist can only entertain the earlier phlogiston

concept by absorbing the entire pre-Lavoisier theory, not by trying to insert the single

phlogiston concept into their more recent theory or by finding an equivalent concept in

their theory.

In psychology, researchers have argued that concepts are frequently characterized by

their associative relations to other concepts. Barr and Caplan (1987) provide evidence, by

having subjects list features associated with words, that many concepts are characterized

by what they call “extrinsic features”, features that are “represented as the relationship

between two or more entities” (p. 398).1 An extrinsic feature of Hammer is that it is “used

to strike nails”. This feature makes recourse to an object other than hammer. If this feature

is part of one’s natural concept of Hammer, then one cannot possess Hammer without

also possessing Nail. Goldstone (1993, 1996) presented empirical evidence that concepts

are often interrelated in the sense that each simultaneously acquired concept not only

influences how often each concept is used as a label for a presented stimulus, but also

influences the absolute representation of each concept. In particular, when two concepts

are highly interrelated (e.g. when they are presented in close temporal proximity to each

other, or when their labels are similar), there is a tendency for people to create representa-

tions of the concepts that are systematically distorted away from each other. This is

accomplished by de-emphasizing features that are possessed by both concepts, and by

encoding caricatured rather than veridical dimension values for the concepts (see also

Goldstone, 1995).
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Finally, in computer science, semantic networks have been a major approach to knowl-

edge representation. In these networks, concepts are represented by nodes in a network,

and gain their functionality by their links to other concept nodes (Collins & Loftus, 1975;

Quillian, 1967). Often times, these links are labeled, in which case different links refer to

different kinds of relations between nodes. Dog would be connected to Animal by an Is-a
link, to Bone by an Eats link, and to Paw by a Has-a link. Lenat and Feigenbaum (1991)

have argued that inter-conceptual linkages are sufficient for establishing conceptual mean-

ings even without any external grounding of the concepts: “The problem of ‘genuine

semantics’ … gets easier, not harder, as the K[nowledge] B[ase] grows. In the case of

an enormous KB, such as CYC’s, for example, we could rename all of the frames and

predicates as G001, G002, …, and – using our knowledge of the world – reconstruct what

each of their names must be.” (p. 236). A computational approach to word meaning that

has received considerable recent attention has been to base word meanings solely on the

patterns of co-occurrence between a large number of words in an extremely large text

corpus (Burgess, Livesay, & Lund, 1998; Burgess & Lund, 2000; Landauer & Dumais,

1997). Mathematical techniques are used to create vector encodings of words that effi-

ciently capture their co-occurrences. If two words, such as “cocoon” and “butterfly”

frequently co-occur in an encyclopedia or enter into similar patterns of co-occurrence

with other words, then their vector representations will be highly similar. The meaning of a

word, its vector in a high dimensional space, is completely based on the contextual

similarity of the word to other words.

A claim common to these briefly considered theories in linguistics, philosophy,

psychology, and computer science is that concepts can only be understood once an entire

system of interrelated concepts has been acquired. The concept Strike from baseball

depends on concepts such as Batter, Ball, Strike Zone, and Swing, and these concepts

themselves depend on other baseball concepts. Understanding a psychologist’s notion of a

Conditioned Response is possible only after a theory of stimulus–response association is

learned. Until then, the definition “a conditioned response is behavior that is elicited when

a neutral cue is presented that has been paired with a positive or negative reinforcer” will

be of little help in teaching the concept.

3. Externally grounded concepts

Although the notion that concepts gain their meaning by their relations to other concepts

has been popular in cognitive science, it is not without its detractors. Some have argued

that the role of a concept within a network is insufficient to establish its meaning. The

concept must be somehow connected to the external world, and this external connection

establishes at least part of the meaning of the concept. In his article “The symbol ground-

ing problem”, Stevan Harnad (1990) considers the following thought experiment:

Suppose you had to learn Chinese as a first language and the only source of informa-

tion you had was a Chinese/Chinese dictionary. […]. How can you ever get off the

symbol/symbol merry-go-round? How is symbol meaning to be grounded in some-

thing other than just more meaningless symbols? This is the symbol grounding

problem. (pp. 339–340)
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This skepticism with the sufficiency of conceptual web accounts has several earlier

precedents in philosophy. As part of the British empiricist movement, David Hume (1740/

1973) argued that our conceptual ideas originate in recombinations of sensory impres-

sions. John Locke (1690) believed that our concepts (“ideas”) have their origin either by

our sense organs or by an internal sense of reflection. He argues further that our original

ideas are derived from sensations (e.g. yellow, white, heat, cold, soft, and hard), and that

the remaining ideas are derived from or depend upon these original ideas. Viewing sensory

information as the ultimate ground for our concepts and beliefs is commonplace in philo-

sophy. For example, Quine and Ullian (1970) argue “Thus the ultimate evidence that our

whole system of beliefs has to answer up to consists strictly of our own direct observations

– including our observations of our notes and of other people’s reports” (p. 21).

In psychology, the importance of conceptual meanings that are grounded in something

other than other concepts has recently manifested itself in a call for perceptually-based

concepts. In the Barsalou’s (1999) theory of perceptual symbol systems, concepts are not

amodal, completely abstracted symbols, but rather are intrinsically perceptually based. He

finds that detailed perceptual information is represented in concepts and that this informa-

tion is used when reasoning about those concepts. Goldstone and Barsalou (1998) argue

for strong parallels between processes traditionally considered to be perceptual on the one

hand and conceptual on the other, and that perceptual processes are co-opted by abstract

conceptual thought. This research, together with research on the bi-directional influences

between our concepts and perceptions (Goldstone, Steyvers, Spencer-Smith, & Kersten,

2000; Schyns, Goldstone, & Thibaut, 1998), suggests that apparently high-level concep-

tual knowledge and low-level perception may be more closely related than traditionally

thought.

In computer science, there is a growing interest in conceptual systems that are grounded

in embodied systems (Brooks, 1991). Researchers in robotics and artificial life have

argued that the concepts that an agent learns should be grounded in the agent’s perceptual

and motor systems (Almasi & Sporns, 2001). By embodying a neural architecture in a real

device, the capabilities and adaptability of the system are augmented. Part of the rationale

for the embodied systems research program seems to be a mistrust with purely symbolic

representations that are disconnected from the physical environment and the organism’s

bodily affordances.

Thus far, we have used externally grounded concepts to mean those that are connected

to the world via our senses. However, there is a second, philosophical use of external

meaning to refer to meaning that is causally connected to the external world without

necessarily being mediated through the senses. In this tradition, both the perceptual and

conceptual components to meaning would be considered internal because they are

centered in a single person rather than world (Block, 1986; Miller & Johnson-Laird,

1976). The famous Putnam (1973) “twin earth” thought experiment is designed to show

how the same internal, mental content can be associated with two different external

referents. Putnam has us imagine a world, twin earth, that is exactly like our earth except

that the compound we call water (H2O) has a different atomic structure (xyz), while still

looking, feeling, and acting like water as we on real earth know it. Two molecule-for-

molecule identical individuals, one on earth and one on twin earth, would presumably have

the same internal mental state when thinking “water is wet”, and yet, Putnam argues, they
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mean something different. One means stuff that is actually, whether they know it or not,

made up of H2O, while the other means stuff that is made up of xyz. Putnam concludes that

what is meant by a term is not determined solely by mental states, but rather depends upon

the external world as well.

The difference between these two interpretations of “external” thus hinges on whether

perceptual components are considered to be within or outside the boundary of the internal

system. A convincing argument has been made for a graded rather than clear-cut boundary

around a system because the same device can be interpreted as being part of an organism’s

perceptual system or as a transducer external to the system (Clark & Chalmers, 1998).

Consistent with this desire to dissolve the boundary around a system, Harman (1987) has

proposed a conceptual role semantics account in which the role that a concept plays is

construed widely to include its relations to external objects as well as its relations to other

concepts. In the following discussion, we will interpret external grounding to refer to any

component of conceptual meaning that does not depend on other concepts. This definition

coincides with our modeling work in which external grounding will be instantiated as any

source of information that is external to the conceptual web, and may include perceptual

processes, labels, or teacher signals. In adopting this narrower construal of external

grounding, we remain silent on whether or how the world could causally connect to our

conceptual systems in a manner not reducible to its impact as mediated through our

perceptual and motor systems.

4. Translation across conceptual systems

The goal of this article is to argue for the synergistic integration of conceptual web and

externally grounded accounts of conceptual meaning. However, in pursuing this argument,

we will first argue for the sufficiency of the conceptual web account for a particular task

associated with conceptual meaning. Then, we will show how the conceptual web account

can be ably supplemented by external grounding to establish meanings more successfully

than either method could by itself.

Our point of departure for exploring conceptual meaning will be a highly idealized and

purposefully simplified version of a conceptual translation task. Consider two individuals,

Joan and John, who each possesses a number of concepts. Suppose further that we would

like some way to tell that Joan and John both have a concept of, say, Mushroom. Joan and

John may not have exactly the same concept of Mushroom. John may believe mushrooms

grow from seeds whereas Joan believes they grow from spores. More generally, Joan and

John will differ in the rest of their conceptual networks because of their different experi-

ences and levels of expertise. Still, it seems desirable to say that Joan’s and John’s Mush-
room concepts correspond to one another. We will describe a network that translates

between concepts in two systems, placing, for example, Joan’s and John’s Mushroom
concepts in correspondence with each other.

Translation across systems is generally desirable and specifically necessary in order to

say things like “John’s concept of mushrooms is less informed than Joan’s”. The existence

of this kind of translation has been taken as a challenge to conceptual web accounts of

meaning. Fodor and Lepore (1992) offer an extended critical examination of “translation
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holism”, by which they mean the view that nothing can translate a concept from a system L

unless it belongs to a system containing many concepts that are translations of many

concepts of L. To take the Kuhn (1962) example, translation holism asserts the impossi-

bility that Lavoisier’s notion of oxygen can translate into a pre-Lavoisier chemistry simply

by creating a corresponding term in the pre-Lavoisier chemistry. The only way for oxygen
to have a corresponding concept would be to generate many terms in this pre-Lavoisier

chemistry that correspond to concepts in Lavoisier’s chemistry.

Cross-system translation’s challenge to conceptual web accounts, by Fodor and

Lepore’s interpretation, is that if a concept’s meaning depends on its role within the larger

system, and if there are some differences between the systems, then the meanings of the

concepts in the two systems would be different. They write:

But now suppose that holism is true about thought content. Then, since you and I

surely have widely different belief systems (think of all the things you know that I

don’t) and since, by definition, a property is holistic only if nothing has it unless

many other things do, it may well turn out that none of your thought has the property

of bearing T* to any of mine. [T* is the property which a belief has if and only if it

expresses a proposition that is the content of some belief of mine]. It would follow

that that not more than one of us ever has thoughts about color or thoughts about red.

(p. 14)

We are left in the position of not being able to tell that Joan’s and John’s Mushroom
concepts correspond to each other. This result is bad enough when considering the two

systems to be different people or different scientific theories, but is devastating when one

considers the two systems to be the same person at two different times.

A natural way to try to salvage the conceptual web account is to argue that determining

corresponding concepts across systems does not require the systems to be identical, but

only similar. However, Fodor (Fodor, 1998; Fodor & Lepore, 1992) insists that the notion

of similarity is not adequate to establish that Joan and John both possess a Mushroom
concept. Fodor (1998) considers a situation where you and I have some shared beliefs

about GW (George Washington), but some different beliefs as well:

The similarity of our GW concepts is thus some (presumably weighted) function of

the number of propositions about him that we both believe […] But the question now

arises: what about the shared beliefs themselves; are they or aren’t they literally

shared? This poses a dilemma for the similarity theorist that is, as far as I can see,

unavoidable. If he says that our agreed upon beliefs about GW are literally shared,

then he hasn’t managed to do what he promised; viz. introduce a notion of similarity

of content that dispenses with a robust notion of publicity [a notion that requires

identity of beliefs]. But if he says that the agreed beliefs aren’t literally shared (viz.

that they are only required to be similar), then his account of content similarity begs

the very question it was supposed to answer: his way of saying what it is for concepts

to have similar, but not identical contents presupposes a prior notion of beliefs with

similar but not identical concepts. (pp. 31–32)

Fodor (1998) goes on to argue that all approaches in cognitive science that attempt to

determine identical concepts across individuals by measuring conceptual similarities are
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misguided. For example, if concepts are assumed to consist of sets of features, then two

people’s concept of bachelor may vary in similarity depending on how many features they

have in common. However, Fodor argues that identity of features is required of this

account in order to determine how many features two person’s concepts share. Again,

the claim is that conceptual similarity in fact assumes a notion of identity. This identity

problem also holds for multidimensional scaling notions of similarity, and for similarity in

terms of strength of beliefs. In situations where conceptual similarity appears to explain

how concepts are placed in correspondence across people “it really does seem to be

identity of belief content that’s needed here. If our respective beliefs […] were supposed

to be merely similar, circularity would ensue: since content similarity is the notion we are

trying to explicate, it mustn’t be among the notions that the explication presupposed (I

think I may have mentioned that before)” (p. 33).

We will now present a simple neural network called ABSURDIST (Aligning Between

Systems Using Relations Derived Inside Systems for Translation) that finds conceptual

correspondences across two systems (two people, two time slices of one person, two

scientific theories, two cultures, two developmental age groups, two language commu-

nities, etc.) using only inter-conceptual similarities, not conceptual identities, as input.

Laakso and Cottrell (1998, 2000) describe another neural network model that uses simi-

larity relations within two systems to compare the similarity of the systems. ABSURDIST

will take as input two systems of concepts in which every concept of a system is defined

exclusively in terms of its dissimilarities to other concepts in the same system. ABSUR-

DIST produces as output a set of correspondences indicating which concepts from System

A correspond to which concepts from System B. These correspondences serve as the basis

for understanding how the systems can communicate with each other without the assump-

tion made by Fodor (1998) that the two systems have exactly the same concepts. Fodor

argues that any account of concepts should explain their “publicity” – the notion that the

same concept can be possessed by more than one person. Instead, we will advocate a

notion of “correspondence”. An account of concepts should explain how concepts

possessed by different people can correspond to one another, even if the concepts do

not have exactly the same content. The notion of corresponding concepts is less restrictive

than the notion of identical concepts, but is still sufficient to explain how people can share

a conversational ground, and how a single person’s concepts can persist across time

despite changes in the person’s knowledge. While less restrictive than the notion of

concept identity, the notion of correspondence is stronger than the notion of concept

similarity. John’s alligator concept may be similar to Joan’s crocodile concept, but the

two do not correspond because John’s crocodile concept is even more similar in terms of

its role within the conceptual system. Two concepts correspond to each other if they play

equivalent roles within their systems, and ABSURDIST provides a formal method for

determining equivalence of roles.

The existence of ABSURDIST provides evidence against Fodor’s argument that simi-

larities between people’s concepts are an insufficient basis for determining that two people

share an equivalent concept. Moreover, the network also explores the larger issue of

whether conceptual meanings can be determined solely on the basis of inter-conceptual

similarity relations. To avoid potential misunderstandings, four disclaimers are in order

before we describe the algorithm.
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First, ABSURDIST finds corresponding concepts across individuals, but does not

connect these concepts to the external world. The algorithm can reveal that Joan’s mush-
room concept corresponds to John’s mushroom concept, but the basic algorithm does not

reveal what in the external world corresponds to these concepts. However, an interesting

extension of ABSURDIST would be to find correspondences between concepts within an

internal system and physically measurable elements of an external system.

Second, our intention is not to create a rich or realistic model of translation across

systems. In fact, our intention is to explore the simplest, most impoverished representation

of concepts and their interrelations that is possible. If such a representation suffices to

determine cross-system translations, then richer representations would presumably fare

even better. To this end, we will not represent concepts as structured lists of dimension

values, features or attribute/value frames, and we will not consider different kinds of

relations between concepts such as Is-a, Has-a, Part-of, Used-for, or Causes. Concepts

are simply elements that are related to other concepts within their system by a single,

generic similarity relation. The specific input that ABSURDIST takes will be two two-

dimensional proximity matrices, one for each system. Each matrix indicates the similarity

of every concept within a system to every other concept in the system. While an indivi-

dual’s concepts certainly relate to each other in many ways (Medin, Goldstone, & Gentner,

1990, 1993), using many kinds of similarity (Goldstone, 1994a), our present point is that

even if the only relation between concepts in a system were generic similarity, this would

suffice to find translations of the concept in different systems.

The third disclaimer is that ABSURDIST is hardly a complete model of conceptual

meaning. The intention of the model is simply to show how one task related to conceptual

meaning, finding corresponding concepts across two systems, can be solved using only

within-system similarities between concepts. It is relevant to the general issue of concep-

tual meaning given the arguments in the literature (e.g. Fodor, 1998) that this kind of

within-system similarity is insufficient to identify cross-system matching concepts.

However, simply determining that concepts are equivalent across systems does not tell

us what the concepts mean, as is made abundantly clear by the intentionally impoverished

conceptual representations of ABSURDIST.

Fourth, our intention is not to describe a human simulation of translation, conceptual

alignment, or analogy (e.g. Falkenhainer, Forbus, & Gentner, 1989; Hofstadter, 1995;

Hummel & Holyoak, 1997). ABSURDIST finds correspondences between concepts across

systems, and would not typically be housed in any one of the systems. The exception to

this would be if a system was interested in finding translations between entities in two

distinct subsystems within it. In this case, the algorithm could be considered a model of

human conceptual alignment, albeit one that uses a much simpler representation than the

models cited above. In other simulations of human conceptual alignment, such as SME

(Falkenhainer et al., 1989), SIAM (Goldstone, 1994b), LISA (Hummel & Holyoak, 1997),

Drama (Eliasmith & Thagard, 2001), and ACME (Holyoak & Thagard, 1989), the

concepts themselves are richly structured in terms of hierarchical feature sets, proposi-

tions, or attribute/value sets. From this perspective, ABSURDIST may apply when these

other models cannot, in domains where explicit structural descriptions are not available,

but simple similarity relations are available. For example, a German–English bilingual

could probably provide subjective similarity ratings of words within the set {Cat, Dog,
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Lion, Shark, Tortoise} and separately consider the similarities of the words within the set

{Katze, Hund, Löwe, Hai, Schildkröte}. These similarities would provide the input needed

by ABSURDIST to determine that “Cat” corresponds to “Katze”. However, the same

bilingual might not be able to provide the kind of analytic and structured representation

of “Cat” that the other models require. Apart from this practical benefit, the theoretical

contribution of ABSURDIST is to show that it is possible to find correspondences across

systems even when the entities within a system are completely defined by their relations to

other entities within the same system. With the SME, SIAM, LISA, and ACME systems,

the representations of concepts include both relations to other concepts within the domain

and stand-alone properties.

If the primary interpretation of ABSURDIST is not as a computational model of a single

human’s cognition, then what is it? It is an algorithm that demonstrates the available

information that could be used to find translations between systems. The argument will

be that even systems with strictly internal relations among their parts possess the informa-

tion necessary for an observer to translate between them.

5. The ABSURDIST algorithm

Elements A1,…m belong to System A, while elements B1,…n belong to System B. Ct(Aq,Bx)

is the activation, at time t, of the unit that represents the correspondence between the qth

element of A and the xth element of B. There will be m £ n correspondence units, one for

each possible pair of corresponding elements between A and B. In the current example,

every element represents one concept in a system. The activation of a correspondence unit

is bound between 0 and 1, with a value of 1 indicating a strong correspondence between

the associated elements, and a value of 0 indicating strong evidence that the elements do

not correspond. Correspondence units dynamically evolve over time by the equations:

if NðCtðAq;BxÞÞ $ 0 then Ct11ðAq;BxÞ ¼ CtðAq;BxÞ1 NðCtðAq;BxÞÞðmax 2 CtðAq;BxÞÞL

else Ct11ðAq;BxÞ ¼ CtðAq;BxÞ1 NðCtðAq;BxÞÞðCtðAq;BxÞ2 minÞL (1)

If N(Ct(Aq,Bx)), the net input to a unit that links the qth element of A and the xth element of

B, is positive, then the unit’s activation will increase as a function of the net input, a

squashing function that limits activation to an upper bound of max ¼ 1, and a learning rate

L (set to 1). If the net input is negative, then activations are limited by a lower bound of

min ¼ 0. The net input is defined as

NðCt;Aq;BxÞ ¼ aEðAq;BxÞ1 bRðAq;BxÞ2 xIðAq;BxÞ ð2Þ

where the E term is the external similarity between Aq and Bx, R is their internal similarity,

I is the inhibition to placing Aq and Bx into correspondence that is supplied by other

developing correspondence units, and a1 b1 x ¼ 1. When a ¼ 0, then correspondences

between A and B will be based solely on the similarities among the elements within a

system, as proposed by a conceptual web account.

The amount of excitation to a unit based on within-domain relations is given by
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RðAq;BxÞ ¼

Xm
r¼1
r–q

Xn

y¼1

y–x

SðDðAq;ArÞ;DðBx;ByÞÞCtðAr;ByÞ

minðm; nÞ2 1

where D(Aq,Ar) is the psychological distance between elements q and r in System A, and

S(E,F) is the similarity between distances E and F, and is defined as

SðE;FÞ ¼ e2 E2Fj j

The amount of inhibition is given by

IðAq;BxÞ ¼

Xm
r¼1
r–q

CtðAr;BxÞ1
Xn

y¼1

y–x

CtðAq;ByÞ

m 1 n 2 2

These equations instantiate a fairly standard constraint satisfaction network, with one

twist. According to the equation for R, elements q and x will tend to be placed into

correspondence to the extent that they enter into similar similarity relations with other

elements. For example, in Fig. 1, q has a distance of 7 to one element (r) and a distance of 9

to another element (s) within its System A. These are similar to the distances that x has to

the other elements in System B, and accordingly there should be a tendency to place q in

correspondence with x. Some similarity relations should count much more than others.

The similarity between D(Aq,Ar) and D(Bx,By) should matter more than the similarity

between D(Aq,Ar) and D(Bx,Bz) in terms of strengthening the correspondence between q

and x, because Ar corresponds to By not to Bz. This is achieved by weighting the similarity

between two distances by the strength of the units that align elements that are placed in

correspondence by the distances. As the network begins to place Ar into correspondence

with By, the similarity between D(Aq,Ar) and D(Bx,By) becomes emphasized as a basis for

placing Aq into correspondence with Bx. As such, the equation for R represents the sum of

the supporting evidence (the consistent correspondences), with each piece of support

weighted by its relevance (given by the similarity term). This sum is normalized by

dividing it by the minimum of (m 2 1) and (n 2 1). This minimum is the number of

terms that will contribute to the R term if only one-to-one correspondences exist between

systems.

The inhibitory I term is based on a one-to-one mapping constraint (Falkenhainer et al.,

1989; Holyoak & Thagard, 1989). The unit that places Aq into correspondence with Bx will

tend to become deactivated if other strongly activated units place Aq into correspondence

with other elements from B, or Bx into correspondence with other elements from A.

Correspondence unit activations are initialized to random values selected from a normal

distribution with a mean of 0.5 and a standard deviation of 0.05. In our simulations, Eq. (1) is

iterated for a fixed number of cycles. It is assumed that ABSURDIST places two elements

into correspondences if the activation of their correspondence unit is greater than 0.55 after

the fixed number of iterations have been completed. Thus, the network gives as output a

complete set of proposed correspondences/translations between Systems A and B.
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6. An empirical assessment of ABSURDIST’s performance

The general form of the ABSURDIST model presented above does not constrain rela-

tions between elements within a system, the D(x,y) values. The network takes two dissim-

ilarity matrices as input, and the elements of these matrices can assume any non-negative

values. However, in assessing ABSURDIST’s performance, it will be helpful to assume

that the conceptual dissimilarities obey metric assumptions, and are interpretable as

distances between concepts lying in a geometric space. Our general method for evaluating

ABSURDIST will be to generate a number of elements in an N-dimensional space, with

each element identified by its value on each of the N dimensions. These will be the

elements of System A, and each is represented as a point in space. Then, System B’s

elements are created by copying the points from System A and adding Gaussian noise with

a mean of 0 to each of the dimension values of each of the points. The motivation for

distorting A’s points to generate B’s points is to model the common phenomenon that

people’s concepts are not identical, and are not identically related to one another. The

distances between every pair of elements within a system are computed by

Dðx; yÞ ¼

"XN
n¼1

�����Vn;x 2 Vn;y

�����
r
# 1

r

where Vn,x is the value of element x on dimension n, and r is a parameter that specifies the

kind of Minkowski distance metric used (r ¼ 1 for City-block distance, r ¼ 2 for Eucli-

R.L. Goldstone, B.J. Rogosky / Cognition 84 (2002) 295–320306

Fig. 1. An example of the input to ABSURDIST. Two systems, A and B, are each represented solely in terms of

the distances/dissimilarities between elements within a system. The correct output from ABSURDIST would be a

cross-system translation in which element q was placed in correspondence with x, r with y, and s with z. Arcs are

labeled with the distances between the elements connected by the arcs.



dean). Then, Eq. (1) is used to update correspondences across the two systems for a fixed

number of iterations. The correspondences computed by ABSURDIST are then compared

to the correct correspondences. Two elements correctly correspond to each other if the

element in System B was originally copied from the element in System A.

6.1. Tolerance to distortion

An initial set of simulations was conducted to determine how robust the ABSURDIST

algorithm was to noise and how well the algorithm scaled to different sized systems. As

such, we ran a 7 £ 6 factorial combination of simulations, with 7 levels of added noise and 6

different numbers of elements per system. Noise was infused into the algorithm by varying

the displacement between corresponding points across systems. The points in System A

were set by randomly selecting dimension values from a uniform random distribution with a

range from 0 to 1000. System B points were copied from System A, and Gaussian noise with

standard deviations of 0, 0.1, 0.2, 0.3, 0.4, or 0.5% was added to the points of B. The number

of points per system was 3, 4, 5, 6, 10, or 15. Correspondences were computed after 4000

iterations of Eq. (1). The Minkowski r value was set to 2. a was set to 0 (no external

information was used to determine correspondences), b was set to 0.4, and x was set to

0.6. The values for b and x were selected because they were the most balanced weights that

produced fewer than 5% two-to-one correspondences. For each of the 30 combinations of

noise and number of items, 1000 separate randomized starting configurations were tested.

The results from this simulation are shown in Fig. 2, which plots the percentage of simula-

tions in which each of the proper correspondences between systems is recovered. For

example, for 15-item systems, the figure plots the percentage of time that all 15 correspon-

dences are recovered. The graph shows that performance gradually deteriorates with added

noise, but that the algorithm is robust to at least modest amounts of noise.

More surprisingly, Fig. 2 also shows that the algorithm’s ability to recover true

correspondences generally increases as a function of the number of elements in each

system, at least for small levels of noise. One might have thought that as more elements

were matched between systems there would be greater confusion between elements,

given that the size of the bounding region remains constant. In fact, at a noise level

where the probability of correctly translating all elements for three-element systems is

less than 50% (noise ¼ 0:3%), completely correct translations for five-element and 15-

element systems are found 74 and 92% of the time, respectively. The reason for this is

that as the number of elements in a system increases, the similarity relations between

those elements provide increasingly strong constraints that serve to uniquely identify

each element. In the same way that more reliable multidimensional scaling solutions are

found as the number of related points increases, so does the ability to identify a point on

the basis of its relations to other points in the same system. The advantage of finding

translations as the number of points in a system increases is all the more impressive

when one considers chance performance. If one generated random translations that were

constrained to allow only one-to-one correspondences, then the probability of generating

a completely correct translation would be 1/N!. Thus, with 0.6% noise, the 23% rate of

recovering all three correspondences for a three-item system is slightly above chance

performance of 16.67%. However, with the same amount of noise, the 17% rate of
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recovering all of the correspondences for a 15-item system is remarkably higher than the

chance rate of 7.6 £ 10213. Thus, at least in our highly simplified domain, we have

support for the argument of Lenat and Feigenbaum (1991) that establishing meanings

on the basis of within-system relations becomes easier, not harder, as the size of the

system increases.

The measure of translation accuracy shown in Fig. 2 is a conservative measure of

performance because properly aligning 14 out of 15 items, for example, would be

counted as a failure rather than success. Fig. 3 provides more detailed information on

the distribution of partially correct and fully correct alignments. Fig. 3 graphs the

frequency, over the 1000 tests, of obtaining a given percentage of correct correspon-

dences for different items. This graph reveals that partially correct translations are rarely

obtained. With relatively few exceptions, either ABSURDIST finds all of the correct

correspondences, or finds none. The reason why 0% of correspondences are found more

frequently than would be predicted by chance responding is that on these trials no cross-

system correspondence receives activation above 0.55. Fig. 3 indicates that if some

concepts are correctly translated, then all concepts are likely to be correctly translated.

This is, once again, due to the cooperative, synergistic nature of the algorithm for

determining correspondences.

In evaluating the efficiency of the algorithm, it is useful to know how quickly it

converges to good solutions. Fig. 4 plots the probability of finding a completely correct
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Fig. 2. Probability of correctly translating every element in one system to every element in a second system, as a

function of the number of items per system, and the amount of noise with which the elements of the second system

are displaced relative to their positions in the first system. For this simulation, the number of dimensions defining

each element is 2, r ¼ 2, number of iterations ¼ 4000, and b ¼ 0:4. In this graph, as well as all others, standard

error bars are smaller than the height of the legend symbols.



translation as a function of the number of items per system and the number of iterations of

Eq. (1). By 4000 iterations, ABSURDIST’s performance has attained nearly asymptotic

levels, and reasonably good levels of performance are found with 1000 and 2000 itera-

tions. One attractive feature of the algorithm shown in Fig. 4 is that the number of

iterations required for good performance is not appreciably affected by the number of

items per system. However, the number of network units required by the algorithm does

increase as a quadratic function of the number of items per system because N2 correspon-

dence units are required for aligning two systems with N items per system.

Fig. 2 shows the robustness of ABSURDIST in the face of noise resulting from displa-

cements of elements across systems. As applied to conceptual systems, this corresponds to

two people having corresponding concepts, but having somewhat different knowledge

associated with the concepts. A more challenging situation arises if people do not have

the same set of concepts at all. One possibility is that one system has more concepts than

the other. When different-sized systems are compared, ABSURDIST’s correspondences

are still typically one-to-one, but not all elements of the larger system are placed in

correspondence. This situation is shown in Fig. 5A, in which System A has three elements

and System B has seven elements, three of which are arranged in the same configuration as

those in System A. Given the parameters used thus far, ABSURDIST correctly places the

elements from System A into correspondence with the three-element pattern contained

within the larger seven-element pattern. In this fashion, ABSURDIST provides an algo-

rithm for finding patterns concealed within larger contexts.

A particularly challenging situation for ABSURDIST occurs if two systems have the
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Fig. 3. Frequency distributions, out of 1000 tests, associated with different numbers of items and different

percentages of correctly translated items. The number of dimensions defining each element is 2,

noise ¼ 0:3%, r ¼ 2, number of iterations ¼ 4000, and b ¼ 0:4.



same number of elements, but only a subset of them properly matches. For example, Joan

and John both have concepts of Mushroom, Fungus, and Spores, but only Joan has a

concept of Truffle and only John has a concept of Morel. This situation is implemented in

Fig. 5B by having four elements per system, with three of the elements matching well

across the systems, but one element from each system having no strong correspondence in

the other system. This is challenging because ABSURDIST’s one-to-one mapping

constraint will tend to match two elements if neither participates in any other strong

correspondences. Despite this tendency, given the situation shown in Fig. 5B and the

previously used parameter values for a , b , and x , ABSURDIST will draw correspon-

dences between the three pairs of elements that share the majority of their roles in

common, but not between the fourth, mismatching elements. The unit that places the

mismatching elements into correspondence does receive excitation from the three units

that place properly matching elements into correspondence due to one-to-one mapping

consistency. However, the lack of similarity between the mismatching elements’ similar-

ity relations to other elements overshadows this excitation.

In sum, we have considered three ways of modeling what it means for people to have

different concepts. First, similarity relations among concepts may be different. Second,

one person may possess more concepts than another person. Third, each person may have

concepts that are unknown to the other person. In each of these cases, ABSURDIST can

translate between people and determine which concepts have corresponding concepts in

the other person and which concepts are untranslatable.
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Fig. 4. Probability of ABSURDIST achieving a perfect translation between two systems, as a function of the

number of iterations. Noise ¼ 0:3%, number of dimensions defining each element ¼ 2, number of tests per

point ¼ 1000, r ¼ 2, and b ¼ 0:4.



6.2. Indirect similarity relations

In ABSURDIST (when a ¼ 0), the cross-system correspondence between two elements

is based on their within-system similarity relations. However, if two elements within a

system enter into the same set of similarity relations, they still may be disambiguated. This

point is clarified by the systems shown in Fig. 6. In System 1, there are two elements, A and

E, that have the same set of dissimilarities, albeit reordered, to the other elements in

System 1. That is, both A and E have distances of 187, 333, 278, and 400 to the other

four units of System 1. System 2 is a rotation of System 1 in which A becomes V, B

becomes W, and so on. Given that A and E have the same within-system distance relations,

one might suspect that deciding whether A corresponds to V or Z of System 2 would be at

chance. However, ABSURDIST is able to determine the proper correspondences, shown

by the dotted lines, with perfect reliability.

The reason for this successful translation is that the all correspondences are worked out

simultaneously, and completely ambiguous correspondences can be disambiguated by

R.L. Goldstone, B.J. Rogosky / Cognition 84 (2002) 295–320 311

Fig. 5. Two examples of ABSURDIST translating only parts of a system, with typical alignments shown by a

solid line connecting elements across the systems. (A) The pattern represented by System 1 is aligned with the

subsystem of System 2 that optimally matches this pattern. (B) The three pairs of elements that have mostly

comparable similarity relations within their systems are placed into correspondence, but a fourth element of each

system is not placed into any correspondence because it is too dissimilar to other elements in terms of its

similarity relations.



other developing correspondences. Initially, the unit that places A into correspondence

with Z will be just as activated as the unit that places A into correspondence with V.

However, the identical distance between A and B from System 1 and X and Z from System

2 will not strengthen the A-to-Z correspondence much because within-system dissimila-

rities will indicate that B corresponds best to W, not X. In general, the eventual correspon-

dence strength between two elements will be based not only on their direct similarity

relations to other elements, but also on indirect relations among other elements. That is,

whether A corresponds to V depends not only on how similar A and V are to other elements

in their systems, but it also depends, for example, on how similar B is to C. Analogs of this

effect can be found in lexical semantics (Landauer & Dumais, 1997), the interpretation of

neural networks (Laakso & Cottrell, 2000), the phenomenology of color perception (Clark,

2000; Palmer, 1999), similarity judgments (Shepard, 1962), and object recognition (Edel-

man, 1999). In each of these domains, a multi-element, complex system provides many

direct and indirect constraints that can determine proper translations across systems. This

is part of the reason why increasing the number of items per system generally increases

rather than decreases the quality of a translation.

6.3. Integrating internal and external determinants of conceptual correspondences

Thus far, translations have been completely based on within-system relations. The

simulations have indicated that within-system relations are sufficient for discovering

between-system translations, but this should not be interpreted as suggesting that the

meaning of an element is not also dependent on relations extrinsic to the system. ABSUR-
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Fig. 6. The horizontal and vertical coordinates for each element of System 1 are shown next to it, and System 1 is

rotated clockwise to obtain the elements of System 2. The correct translation (shown by the dashed lines) between

Systems 1 and 2 is reliably found by ABSURDIST even though elements A and E enter into the same four within-

system distance relationships. Elements A and V, and elements E and Z, are properly aligned because of the role of

indirect, within-system similarity relations on translation.



DIST offers a useful, idealized system for examining interactions between intrinsic

(within-system) and extrinsic (external to the system) aspects of meaning. One way to

incorporate extrinsic biases into the system is by initially seeding correspondence units

with values. Thus far, all correspondence units have been seeded with initial activation

values tightly clustered around 0.5. However, in many situations, there may be external

reasons to think that two elements correspond to each other: they may receive the same

label, they may have perceptual attributes in common, they may be associated with a

common event, or a teacher signal may have provided a hint that the two elements

correspond. In these cases, the initial seed value may be significantly greater than 0.5.

Fig. 7 shows the results of a simulation of ABSURDIST with different amounts of

extrinsic support for a selected correspondence between two elements. Two systems are

generated by randomly creating a set of points in two dimensions for System 1, and

copying the points’ coordinates to System 2 while introducing 0.6% noise to their posi-

tions. When Seed ¼ 0:5, then no correspondence is given an extrinsically supplied bias.

When Seed ¼ 0:75, then one of the true correspondences between the systems is given a

larger initial activation than the other correspondences. When Seed ¼ 1:0, this single

correspondence is given even a larger initial activation. Somewhat unsurprisingly, when

a true correspondence is given a relatively large initial activation, then ABSURDIST
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Fig. 7. Percentage of correct alignments found by ABSURDIST, as a function of the number of items per system,

and the amount of external bias that seeds a single correct alignment between two elements. As the strength of

external bias increases, the percentage of correct correspondences increases, and this increase exceeds the

increase predicted if seeding one alignment only affected the alignment itself (the “Reference” line). As such,

the influence of extrinsic information is accentuated by within-system relations. Noise ¼ 0:6%, number of

dimensions defining each element ¼ 2, number of tests per point ¼ 1000, number of iterations ¼ 4000, r ¼ 2,

and b ¼ 0:4.



recovers a higher percentage of correct correspondences. The extent of this improvement

is more surprising. For example, for a system made up of 15 elements, a mapping accuracy

of 31% is obtained without any extrinsic assistance (Seed ¼ 0:5). If seeding a single

correct correspondence with a value of 1 rather than 0.5 allowed ABSURDIST to recover

just that one correspondence with 100% probability, then accuracy would increase at most

to 35.6% (((0.31 £ 14) 1 1)/15). The reference line in Fig. 7 shows these predicted

increases in accuracy. For all systems tested, the observed increment in accuracy far

outstretches the increase in accuracy predicted if seeding a correspondence only helped

that correspondence. Moreover, the amount by which translation accuracy improves

beyond the amount predicted generally increases as a function of system size. Thus,

externally seeding a correspondence does more than just fix that correspondence. In a

system where correspondences all mutually depend upon each other, seeding one corre-

spondence has a ripple-effect through which other correspondences are improved.

Although external and role-based accounts of meaning have typically been pitted against

each other, it turns out that the effectiveness of externally grounded correspondences is

radically improved by the presence of role-based correspondences.

Eq. (2) provides a second way of incorporating extrinsic influences on correspondences

between systems. This equation defines the net input to a correspondence unit as an

additive function of the extrinsic support for the correspondence, the intrinsic support,

and the competition against it. Thus far, the extrinsic support has been set to 0. The

extrinsic support term can be viewed as any perceptual, linguistic, or top-down informa-

tion that suggests that two objects correspond. For example, two people using the same

verbal label to describe a concept could constitute a strong extrinsic bias to place the

concepts in correspondence. To study interactions between extrinsic and intrinsic support

for correspondences, we conducted 1000 simulations that started with ten randomly placed

points in a two-dimensional space for System A, and then copied these points over to

System B with Gaussian-distributed noise. The intrinsic, role-based support is determined

by the previously described equations. The extrinsic support term of Eq. (2) is given by

EðAq;BxÞ ¼ e2DðAq;BxÞ

where D is the Euclidean distance function between point q of System A and point x of

System B. This equation mirrors the exponential similarity function used to determine

intrinsic similarities, but now compares absolute coordinate values. Thus, the correspon-

dence unit connecting q and x will tend to be strengthened if q and x have similar

coordinates. This is extrinsic support because the similarity of q’s and x’s coordinates

can be determined without any reference to other elements. If the two dimensions reflect

size and brightness, for example, then for q and x to have similar coordinates would mean

that they have similar physical appearances along these perceptual dimensions.

In conducting the present simulation, we assigned three different sets of weights to the

extrinsic and intrinsic support terms. For the “Extrinsic only” results of Fig. 8, we set

a ¼ 0:4, b ¼ 0, and x ¼ 0:6. For this group, correspondences are only based on the

extrinsic similarity between elements. For the “Intrinsic only” results, we set a ¼ 0,

b ¼ 0:4, and x ¼ 0:6. This group is comparable to the previous simulations in that it

uses only a role-based measure of similarity to establish correspondences. Finally, for
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“Intrinsic and Extrinsic”, we set a ¼ 0:2, b ¼ 0:2, and x ¼ 0:6. For this group, corre-

spondences are based on both absolute coordinate similarity and on elements taking part in

similar relations to other elements. Note that both the intrinsic and extrinsic terms are

based on the same coordinate representations for elements. The difference between these

terms centers on whether absolute or relative coordinate values are used.

Fig. 8 shows that using only information intrinsic to a system results in better corre-

spondences than using only extrinsic information. This is because corresponding elements

that have considerably different positions in their systems can often still be properly

connected with intrinsic information if other proper correspondences can be recovered.

The intrinsic support term is more robust than the extrinsic term because it depends on the

entire system of emerging correspondences. For this reason, it is surprising that the best

translation performance is found when intrinsic and extrinsic information are both incor-

porated into Eq. (2). The superior performance of the network that uses both intrinsic and

extrinsic information derives from its robustness in the face of noise. Some distortions to

points of System B adversely affect the intrinsic system more than the extrinsic system. For

example, a slight distortion to a point may make its pattern of distances to other points

quite similar to another point. This will present difficulties to the intrinsic system, but will

not necessarily affect the extrinsic system at all. A set of distortions may have a particu-

larly disruptive influence on either absolute coordinates or relative positions. A system that
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Fig. 8. Probability of ABSURDIST achieving a perfect translation between two systems, as a function of noise,

and the weighting of extrinsic and intrinsic information. Better performance is achieved when all weight is given

to intrinsic information than when only extrinsic information is used. However, the best performance is achieved

when both sources of information are weighted equally. Number of items per system ¼ 10, number of dimensions

defining each element ¼ 2, number of tests per point ¼ 1000, number of iterations ¼ 4000, r ¼ 2, and

a1 b ¼ 0:4.



incorporates both sources of information will tend to recover well from either disruption if

the other source of information is reasonably intact.

7. Discussion of simulations

The ABSURDIST model makes two theoretically important points. First, translations

between two systems can be found using only information about the relations between

elements within a system. This general claim can be applied to the particular issue of

identifying identical concepts across two different people. The claim is that the concept in

Person A that matches a concept in Person B can be found considering only the relations

between concepts in Person A, and the relations between concepts in Person B. ABSUR-

DIST’s account of meaning, impoverished though it is, is based solely on the role of a

concept within its system (when a ¼ 0). ABSURDIST demonstrates how a holistic

conception of meaning is compatible with the goal of determining correspondences

between concepts across individuals. Two people need not have exactly the same systems,

or even the same number of concepts, to create proper conceptual correspondences. Contra

Fodor (Fodor, 1998; Fodor & Lepore, 1992), information in the form of inter-conceptual

similarities suffices to find inter-system equivalences between concepts. In ABSURDIST,

two concepts are treated as matching if the correspondence unit that connects them has an

activation greater than a threshold value, and given the positive feedback inherent in the

algorithm, correspondence units typically converge rapidly to either 0 or 1.

The simulations identify several specific characteristics of the process of conceptual

web-based translation. First, in many cases it is easier to find translations for large systems

than small systems. This is despite two large disadvantages for systems comprising many

elements: there are relatively many opportunities to get the cross-system alignments

wrong, and the elements tend to be close together and hence confusable. The powerful,

compensating advantage of many-element systems is that the roles that an object plays

within a system are more elaborated and distinctive as the number of elements in the

system increases. Second, as exemplified by Fig. 6, an algorithm that uses a concept’s role

within a system to determine its proper translation can still distinguish between concepts

that have the same overall set of relations to other concepts. This is achieved by using

indirect relations. The translation for concept X is based not only on X’s relations, but also

on Y’s relation to Z, assuming that X, Y, and Z belong to the same system. Third, the

particular algorithm presented converges relatively quickly on a cross-system translation,

and the convergence time does not depend much on the size of systems being aligned. The

number of nodes does increase quadratically with the number of elements per system, but

this can be reduced by only building correspondence units for alignments that have initial

support above a threshold level (Goldstone, 1998), or by using dynamic binding operations

to represent correspondences (Hummel & Holyoak, 1997).

The second important theoretical contribution of ABSURDIST is to formalize some of

the ways that intrinsic, within-system relations and extrinsic, perceptual information

synergistically interact in determining conceptual alignments. Intrinsic relations suffice

to determine cross-concept translations, but if extrinsic information is available, more

robust, noise-resistant translations can be found. Moreover, extrinsic information, when
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available, can actually increase the power of intrinsic information. The first evidence for

this is that providing an extrinsic bias to align two concepts improves translation for more

than just this pair of concepts. The beneficial ripple-effect for seeding one alignment

increases with the number of elements in the system. The relations within a system

amplify the effect of extrinsic information. The second evidence is that better alignments

are found when both extrinsic and intrinsic information is used than when either source of

information is exclusively used, even when the total amount of information is equated.

The synergistic benefit of combining intrinsic and extrinsic information sheds new light

on the debate on accounts of conceptual meaning. It is common to think of intrinsic and

extrinsic accounts of meaning as being mutually exclusive, or at least zero-sum. In philo-

sophy, the debate on conceptual meaning has been framed in terms of whether concepts

gain their meaning from their role in a system or their external grounding. By this framing,

conceptual web accounts of meaning seem opposed to externally grounded accounts.

Seemingly, either a concept’s meaning depends on information within its conceptual

system or outside of its conceptual system, and to the extent that one dependency is

strengthened, the other dependency is weakened.

In opposition to this zero-sum perspective on intrinsic and extrinsic meaning, ABSUR-

DIST offers a framework in which a concept’s meaning is both intrinsic and extrinsically

determined, and the external grounding makes intrinsic information more, not less, power-

ful. An advantage of this approach to conceptual meaning is that it avoids an infelicitous

choice between reducing conceptual meanings to sense data and leaving conceptual

systems completely ungrounded. Taking the concept Car as an example, we need not

claim that car’s meaning is completely exhausted by perceptually available data (e.g. a car

is composed of tires, seats, and an engine, and tires are composed of wheels and hubcaps,

and wheels are composed of …). A concept’s meaning may also depend on concepts at the

same level of abstraction (bus and truck), and higher levels of abstraction (car is not only

characterized by engine, but it also serves to characterize engine). Yet, perceptual infor-

mation, when provided, can be an integral part of the concept. To claim that all concepts in

a system depend on all of the other concepts in a system is perfectly compatible with

claiming that all of these concepts have a perceptual basis. These two bases of meaning are

mutually reinforcing, not mutually exclusive.

8. Conclusions

With respect to the application of ABSURDIST to conceptual systems, we agree with

Fodor (1998) that concepts should be shareable. An account of concepts needs to provide a

way of saying that John’s and Joan’s Mushroom concepts correspond to one another

despite their different knowledge about Mushrooms and Tapioca. Without this corre-

spondence, John and Joan would not be able to achieve communicative contact with one

another. They would no longer feel that they are thinking and talking about the same thing.

Where we disagree with Fodor is on the question of whether this impression of thinking

about the same thing requires literal identity between John’s and Joan’s concepts. Accord-

ing to Fodor, “to say that two people share a concept (i.e. that they have literally the same

concept) is thus to say that they have tokens of literally the same concept type” (p. 28). In
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contrast, we have argued that establishing correspondences between concepts is sufficient

to determine matching, and hence shared, concepts across systems.

The advantage of accounting for shared concepts in terms of correspondence rather than

identity is that one avoids the uncomfortable conclusion that people with demonstrably

different knowledge associated with something have the identical concept of that thing.

Although the notion of correspondence is less restrictive than identity, it is more

constrained than similarity. Many concepts may be similar to each other, but in ABSUR-

DIST one concept in System A typically corresponds to at most one concept from System

B. Unlike the completely graded notion of similarity, correspondences in ABSURDIST

become all-or-none after a modest number of iterations. This all-or-none nature of corre-

spondences explains our inclination to say that two people have the same concept, and that

slight differences in the persons’ knowledge do nothing to affect this claim. Joan’s and

John’s Mushroom concepts are placed into complete correspondence with one another

even if only Joan knows that mushrooms come from spores. Despite this difference in

gradedness between similarity and correspondence, it is nonetheless true that correspon-

dences are determined by similarities between concepts across systems. In turn, the simi-

larity of concepts across systems can be based solely on the concepts’ similarities to other

concepts within their system. Even if two systems have different relations between corre-

sponding concepts (Figs. 1 and 2), different numbers of concepts (Fig. 5A), or a subset of

concepts with no correspondences (Fig. 5B), it is often still possible to recover the correct

translation between the conceptual systems using this completely within-system relational

information.

Our claim is not that translation between large systems should or typically does proceed

using only within-system relations. To the contrary, our simulations point out the power of

combining intrinsic, within-system relations and extrinsic grounding. The simulations that

did involve only within-system relations indicate that relations intrinsic to a system are an

effective component for identifying and translating elements within the system, and that

this efficacy does not require extrinsic grounding. Conceptual web accounts of meaning

can offer an account of some aspects of meaning, even though they are most effective

when combined with an externally grounded component. Thus, a system in which the

meanings of its elements all depend upon each other is not viciously circular. A system’s

elements do not need to be grounded in something outside of the system for proper

correspondences between the system’s elements and elements outside of the system to

be formed. The notion that the meaning of an element within a system, and a component of

its meaning that transcends the system, can emerge from its relations to other elements in

the system need not be an ABSURDIST fantasy.
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